澳门网络赌场开户送彩金-网络赌场娱乐-注册娱乐城送体验金

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

三元名家論壇系列報(bào)告之第791期:The Existence of Moving Spike Patterns in an Attractive Chemotaxis Model
作者:     供圖:     供圖:     日期:2025-06-30     來(lái)源:    

講座主題:The Existence of Moving Spike Patterns in an Attractive Chemotaxis Model

專(zhuān)家姓名:李彤

工作單位:美國(guó)愛(ài)荷華大學(xué)

講座時(shí)間:2025年07月01日 15:30-16:30

講座地點(diǎn):數(shù)學(xué)院大會(huì)議室341

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

We prove the existence of moving spike patterns in an attractive chemotaxis model with small diffusion coefficient for the chemical. In the zero diffusion limit, ? → 0, we prove that the non-monotone traveling wave solutions of the system with ? > 0 converge to those of the system with ? = 0. Moreover, we show that the traveling wave solutions are linearly unstable. We perform numerical simulations and find existence of the moving spike patterns when ? > 0 . We confirm that as ? → 0 the traveling wave solutions of the system with ? > 0 converge to the traveling wave solutions of the system with ? = 0 .

Spike patterns in aggregating solutions are important in understanding how new capillaries sprout via angiogenesis from a preexisting vasculature in tumor angiogenesis.

This is a joint work with Casey Stone.

主講人介紹:

李彤,美國(guó)愛(ài)荷華大學(xué)數(shù)學(xué)系教授。1983年本科畢業(yè)于北京大學(xué)數(shù)學(xué)系,1992年于美國(guó)紐約大學(xué)柯朗研究所獲博士學(xué)位,2008年擔(dān)任美國(guó)愛(ài)荷華大學(xué)正教授。目前主要從事非線(xiàn)性雙曲守恒律、交通流、生物數(shù)學(xué)等方面的研究,尤其是在交通流和生物數(shù)學(xué)方面做了很多重要的工作。