澳门网络赌场开户送彩金-网络赌场娱乐-注册娱乐城送体验金

學(xué)術(shù)預(yù)告 首頁(yè)  >  學(xué)術(shù)科研  >  學(xué)術(shù)預(yù)告  >  正文

學(xué)術(shù)預(yù)告-Connectivity, diameter, independence number and the distance spectral radius of graphs
作者:     日期:2017-06-29     來(lái)源:    

講座主題:Connectivity, diameter, independence number and the distance spectral radius of graphs

專(zhuān)家姓名:李書(shū)超

工作單位:華中師范大學(xué)

講座時(shí)間:2017年6月30日10:00-11:00

講座地點(diǎn):數(shù)學(xué)學(xué)院340

主辦單位:煙臺(tái)大學(xué)數(shù)學(xué)與信息科學(xué)學(xué)院

內(nèi)容摘要:

The distance spectral radius of a graph is the largest eigenvalue of its distance matrix. Zhang [Linear Algebra Appl. 437 (2012) 1930-1941] determined the n-vertex graphs of given diameter with the minimum distance spectral radius. In this paper, on the one hand, we generalize this result by determining the graphs of order n with given connectivity and diameter having the minimum distance spectral radius; On the other hand, we determine the minimum distance spectral radius of graphs among the n-vertex graphs with given connectivity and independence number, and characterize the corresponding extremal graph. As consequences, we determine the minimum distance spectral radius of graphs among the n-vertex graphs with given connectivity (resp. independence number). All the corresponding extremal graphs are identified, respectively.

主講人介紹:

華中師范大學(xué)教授、博士生導(dǎo)師。主要從事是圖論與組合數(shù)學(xué)的研究工作。在European Journal of Combinatorics, Journal of Combinatorial Designs,Journal of Combinatorial Optimization等國(guó)際SCI期刊發(fā)表學(xué)術(shù)論文90余篇,其中有兩篇論文入選“2008年中國(guó)100篇最具影響國(guó)際學(xué)術(shù)論文”。2012主持完成的項(xiàng)目“圖的幾類(lèi)重要不變量研究”獲湖北省自然科學(xué)獎(jiǎng);2013年入選“教育部新世紀(jì)優(yōu)秀人才支持計(jì)劃”。目前主持國(guó)家自然科學(xué)基金面上項(xiàng)目1項(xiàng),曾主持完成國(guó)家自然科學(xué)基金面上項(xiàng)目和國(guó)際合作項(xiàng)目各1項(xiàng)。